Characterizing Dynamic Walking Patterns and Detecting Falls with Wearable Sensors Using Gaussian Process Methods

نویسندگان

  • Taehwan Kim
  • Jeongho Park
  • Seongman Heo
  • Keehoon Sung
  • Jooyoung Park
چکیده

By incorporating a growing number of sensors and adopting machine learning technologies, wearable devices have recently become a prominent health care application domain. Among the related research topics in this field, one of the most important issues is detecting falls while walking. Since such falls may lead to serious injuries, automatically and promptly detecting them during daily use of smartphones and/or smart watches is a particular need. In this paper, we investigate the use of Gaussian process (GP) methods for characterizing dynamic walking patterns and detecting falls while walking with built-in wearable sensors in smartphones and/or smartwatches. For the task of characterizing dynamic walking patterns in a low-dimensional latent feature space, we propose a novel approach called auto-encoded Gaussian process dynamical model, in which we combine a GP-based state space modeling method with a nonlinear dimensionality reduction method in a unique manner. The Gaussian process methods are fit for this task because one of the most import strengths of the Gaussian process methods is its capability of handling uncertainty in the model parameters. Also for detecting falls while walking, we propose to recycle the latent samples generated in training the auto-encoded Gaussian process dynamical model for GP-based novelty detection, which can lead to an efficient and seamless solution to the detection task. Experimental results show that the combined use of these GP-based methods can yield promising results for characterizing dynamic walking patterns and detecting falls while walking with the wearable sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wearable Sensor Use for Assessing Standing Balance and Walking Stability in People with Parkinson’s Disease: A Systematic Review

BACKGROUND Postural instability and gait disability threaten the independence and well-being of people with Parkinson's disease and increase the risk of falls and fall-related injuries. Prospective research has shown that commonly-used clinical assessments of balance and walking lack the sensitivity to accurately and consistently identify those people with Parkinson's disease who are at a highe...

متن کامل

Detecting Exceptional Actions Using Wearable Sensors' Data for Developing Life-Log Database of Visually Impaired People

This paper proposes our approach to develop a system supporting visually impaired people with life-log. Visually impaired people face daily problems because of lack of information about road conditions. To find the uncomfortable and dangerous points, detecting their exceptional actions, such as tumbling down and getting lost, is effective. In the experiments, we used two units of iPod touch as ...

متن کامل

A Case Study in Dynamic Belief Networks: Monitoring Walking, Fall Prediction and Detection

The task is to monitor walking patterns and give early warning of falls using foot switch and mercury trigger sensors. We describe a dynamic belief network model for fall diagnosis which, given evidence from sensor observations, outputs beliefs about the current walking status and makes predictions regarding future falls. The model represents possible sensor error and is parametrised to allow c...

متن کامل

Improvement of the Effective Components in the PDR Positioning Method Based on Detecting the User’s Movement Mode Using Smartphone Sensors

The purpose of this paper is to evaluate and improve the accuracy of indoor positioning using smartphone sensors based on Pedestrian Dead Reckoning (PDR) method. In some specific situations, such as fires or power outages that disable infrastructure-based positioning techniques, using PDR method based on smartphone sensors that perform positioning continuously is a good solution.This paper focu...

متن کامل

Fall Diagnosis using Dynamic Belief Networks

The task is to monitor walking patterns and give early warning of falls using foot switch and mercury trigger sensors. We describe a dynamic belief network model for fall diagnosis which, given evidence from sensor observations, outputs beliefs about the current walking status and makes predictions regarding future falls. The model represents possible sensor error and is parametrised to allow c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017